Restricting dopaminergic signaling to either dorsolateral or medial striatum facilitates cognition.
نویسندگان
چکیده
Dopaminergic projections to the ventral and dorsomedial striatum are important for reward, motivation, and goal-directed learning, whereas projections to the dorsolateral striatum are implicated in motor control, habitual enactment of motor skills, visuospatial learning, and memory. These conclusions are derived from studies of rodents with lesions or pharmacological blockade of dopamine signaling to specific brain regions. In contrast, we investigated the behavioral abilities of dopamine-deficient mice in which dopamine signaling was restored to only the medial striatum by viral rescue. These mice displayed intact spatial memory, visuospatial and discriminatory learning. However, acquisition of operant behavior was delayed, and their motivation to obtain food rewards was blunted. We compare these behavioral results with our published results obtained from mice with dopamine signaling restored only to the dorsolateral striatum. We observe that most behaviors are restored with dopamine signaling restored to either brain region and conclude that the action of dopamine in either one of these nonoverlapping striatal areas can support cognitive processes independently of dopamine signaling in the other area.
منابع مشابه
Adaptive and aberrant reward prediction signals in the human brain
Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm, the Salience Attribution Test (SAT). The SAT is a probabilistic reward learning game that emplo...
متن کاملSonic Hedgehog Is a Chemoattractant for Midbrain Dopaminergic Axons
Midbrain dopaminergic axons project from the substantia nigra (SN) and the ventral tegmental area (VTA) to rostral target tissues, including the striatum, pallidum, and hypothalamus. The axons from the medially located VTA project primarily to more medial target tissues in the forebrain, whereas the more lateral SN axons project to lateral targets including the dorsolateral striatum. This struc...
متن کاملAmphetamine Administration into the Ventral Striatum Facilitates Behavioral Interaction with Unconditioned Visual Signals in Rats
BACKGROUND Administration of psychomotor stimulants like amphetamine facilitates behavior in the presence of incentive distal stimuli, which have acquired the motivational properties of primary rewards through associative learning. This facilitation appears to be mediated by the mesolimbic dopamine system, which may also be involved in facilitating behavior in the presence of distal stimuli tha...
متن کاملSelective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: evidence from a model-based fMRI study
Animal studies have found that the phasic activity of dopamine neurons during reward-related learning resembles a "prediction error" (PE) signal derived from a class of computational models called reinforcement learning (RL). An apparently similar signal can be measured using fMRI in the human striatum, a primary dopaminergic target. However, the fMRI signal does not measure dopamine per se, an...
متن کاملThe Study of Apomorphine Effects and Heterogeneity in the Medial Prefrontal Cortex on the Dopaminergic Behaviors of Rats
Objective(s) While the nucleus accumbens and the striatum have received much attention regarding their roles in stereotyped behaviors, the role of the medial prefrontal cortex (mPFC) has not been investigated to the same degree. Few studies have reported the role of the mPFC in dopaminergic induction of locomotor hyperactivity. The mPFC is a heterogeneous area (the anterior cingulated, prelimbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2010